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Abstract
Timely diagnosis of crop diseases in fields is critical for precision on-farm disease management. Remote sensing technology

can be used as an effective and inexpensive method to identify diseased plants in a field scale. However, due to the diversity of

crops and their associated diseases, application of the technology to agriculture is still in research stage, which needs to be

elaborately investigated for algorithm development and standard image processing procedures. In this paper, we examined the

applicability of broadband high spatial-resolution ADAR (Airborne Data Acquisition and Registration) remote sensing data to

detect rice sheath blight and developed an approach to further explore the applicability. Based on the field symptom

measurements, a comprehensive field disease index (DI) was constructed to measure infection severity of the disease and

to relate to image sampled infections. In addition to direct band digital number (DN) values, band ratio indices and standard

difference indices were used to examine possible correlations between field and image data. The results indicated that the

broadband remote sensing imagery has the capability to detect the disease. Some image indices such as RI14, SDI14 and SDI24

worked better than others. A correlation coefficient above 0.62 indicated that these indices would be valuable to use for

identification of the rice disease. In the validation analysis, we obtained a small root mean square error (RMS = 9.1), confirming

the applicability of the developed method. Although the results were encouraging, it was difficult to discriminate healthy plants

from light infection ones when DI < 20 because of their spectral similarities. Hence, it was clear that identification accuracy

increases when infection reaches medium-to-severe levels (DI > 35). This phenomenon illustrated that remote sensing images

with higher spectral resolution (more bands and narrower bandwidth) were required in order to further examine the capability of

separating the light diseased plants from healthy plants.
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1. Introduction

Rice is an important crop worldwide and over half of

the world population relies on it for food. Sustainable

farming of rice depends on many factors including
.
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effective and timely pest management to protect the

crop. Remote sensing has the potential to be used as an

effective and inexpensive technique to identify diseased

plants in a field scale, mainly because infected plants

have different spectral response compared to healthy

plants (Zhang et al., 2002).

Studies on remote sensing applications to crop

diseases are very few (Zhang et al., 2003) though the

potential for application of remote sensing techniques

to epidemiological problems has long been argued

(Cline, 1970). Current epidemiological application of

remote sensing is essentially a mapping exercise to

demonstrate the relevant ecological variables and

processes that can be observed remotely (Hay, 1997).

Quantitative analysis of remote sensing data for

diseased crop identification has not been extensively

studied, in spite of being a potential application of

remote sensing to crop disease control.

As to rice remote sensing, most studies were

focused on field area mapping and production

estimation (Bailey et al., 2001; Ribbes and Le Toan,

1999; Okamoto and Kawashima, 1999; Fang, 1998;

Fang et al., 1998; Kurosu et al., 1997; Hong et al.,

1997a). Inoue et al. (2000) used hyperspectral remote

sensing data to measure rice canopies for estimation of

plant growth. Using multitemporal Radarsat data,

Shao et al. (2001) developed a method to monitor rice

growth for production estimation. Shibayama et al.

(1993) investigated canopy water deficit in paddy rice

using a high-resolution field spectroradiometer. In

another study, Shibayama and Akiyama (1989)

examined rice canopy spectra with relation to leaf

area index (LAI) and above ground phytomass in

visible, near infrared and mid-infrared regions.

Estimation of chlorophyll content in rice canopies

and aboveground net production were examined in

Hong et al. (1997a,b). When plants infected with

pathogens, their stressed growth were morphologi-

cally displayed on the canopy due to internal damage

in chlorophyll pigments and tissue structure for

photosynthesis and metabolism. Consequently, the

diseased plants will have different spectral features

from healthy plants. Remote sensing discriminates

this spectral difference to identify the diseased plants

or patches in field (Zhang et al., 2003).

In spite of this potential ability, examinations of

rice disease with remote sensing technology are not

many up to present. One example in this aspect was
the research of Yamamoto et al. (1995), which

reported remote sensing of occurrence of rice blast

disease by infrared thermal image. Blast and sheath

blight are the two most important rice diseases that

impact rice farming in the world (Ou, 1985). The

diseased plants behave differently in spectral reflec-

tance and thermal emission from healthy ones (Zhang

et al., 2003), which provide the possibility of remote

sensing technology to identify the diseased plants

through quantitative analysis of their spectral differ-

ences. The objectives of the study is to examine the

applicability of broadband high spatial-resolution

ADAR (Airborne Data Acquisition and Registration)

remote sensing data in visible and near infrared to

detect rice sheath blight disease, and to develop an

applicable approach for practical use of the remote

sensing technology. Using different combinations of

the ADAR bands, we develop six band ratio indices

and six band difference indices to test their correlation

with disease index from field data. Then we examine

the possibility of integrating the useful image indices

into a remote sensing index for image process of

estimating the disease severity in the field.
2. Background and study site

Rice farming in the United States is mainly

concentrated in Arkansas and California, with Arkansas

accounting for �47% of US total in both acreage and

production. (USDA, 1999; LaCapra et al., 1996).

Experiments of the study were conducted on a large rice

field in west Hazen city in central Arkansas. Sheath

blight is one of the most serious rice diseases in

Arkansas. An annual loss of rice yield and quality due to

the blight is often greater than $80 million (USDA,

1999). Size of the field is approximately 762 m in length

from north to south and 467 m in width from east to

west. Geomorphologically, landscape of the region is an

alluvial plain characterized with fertile black soil for

agriculture. Fig. 1a shows growing conditions of rice

plants in the field when samplings were conducted for

evaluation of infection severity of the disease. For

convenience of irrigation management, the field was

divided into a number of levees (Fig. 1b).

The rice field was diagnosed with sheath blight

disease, which naturally infects the rice plants in one

and half month after seedlings established. Rice sheath
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Fig. 1. (a) A ground photo of the rice field, in which levees are seen

and (b) ADAR image of the rice field, acquired on July 12, 1999, with

bands 3, 2, and 1 as RBG. The curved lines in the image are levees.
blight is mainly caused by fungal pathogen Rhizocto-

nia solani Kühn (Nandakumar et al., 2001; Savary

et al., 1997) though some scholars such as Radja et al.

(2002) and Johanson et al. (1998) believed that there

was more than a single cause. Both R. oryzae and R.

oryzae-sativae cause symptoms that are very similar to

those of leaf blight such as sheath spot, and, lesions on

leaf sheath, respectively. As a consequence, diagnosis

of these diseases by ground visual observation is

extremely difficult and often inaccurate, particularly at
early stages of lesion development when appropriate

disease control measures must be implemented

(Johanson et al., 1998).

Pathogen Rhizoctonia solani Kühn is both soil and

water borne. Moreover, it produces a phytotoxin that

could reproduce most of the symptoms of the disease

(Nandakumar et al., 2001; Vidhyasekaran et al., 1997;

Marshall and Rush, 1980). Currently no economically

viable means are available to control the disease.

Chemical means of pest management are expensive

(Nandakumar et al., 2001) and have potential

environmental impacts. Biological control of disease

has been the focus in recent years. It is believed that

the ideal bio-control agent for these pests should

survive in both the rhizosphere and phyllosphere.

Among various bio-control agents, strains of plant

growth promoting Rhizobacteria are known to survive

both in rhizosphere and phyllosphere (Krishnamurthy

and Gnanamanickam, 1998).

One interesting characteristic of the disease is that

primary inoculums of the disease are mainly soil-water

borne, while the secondary inoculums do not consist of

spores, but are predominantly in form of mycelial

strands produced by primary lesions that run on the

surface of leaves and sheaths to establish new lesions.

As a result, epidemics usually exhibit a very strong

spatial aggregation (Savary et al., 1997, 1995). Two

parts are often important for observing the disease: base

of rice crop canopy where primary infection predomi-

nantly occurs, and upper part of canopy where

secondary infection and spread takes place (Savary

et al., 1997). The terminology of ‘vertical spread’ and

‘horizontal spread’ has been used to describe sheath

blight epidemics. The first refers to progress of infection

along a tiller, from its base to its upper leaves by means

of expanding lesions. The second refers to disease

spread in crop, i.e. across tillers and rice plants (Savary

et al., 1998). These characteristics are important in field

samplings and image interpretation of the study.
3. Methods

3.1. Field sampling to estimate field infection

severity

Field samplings were systematically conducted in

the rice field during August and September 1999. The
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Fig. 2. Effects of different sampling schemes on sampling results

for image 7/24.
field was divided into 11 strips, with a width of

approximately 40 m for each strip except strip 11,

which has a width of approximately 37 m. Field data

of infection severity was estimated at each sampling

site by walking centrally along each strip from east to

west. The distance between two adjacent sampling

sites was approximately 9 m. Thus for each strip we

collected approximately 50 samples. At each site,

several plants were manually examined to estimate

average infection severity of the site. Three measure-

ments were used to evaluate the severity: SHBDI =

percentage of infected tillers (sheath blight) estimated

by manual counting; SHBDH = height in cm of sheath

blight symptoms above ground; TH = height in cm of

plant canopy above soil. Finally, following the method

of Nandakumar et al. (2001), we used the three field

measurements to construct a comprehensive field

disease index (hereafter field disease index) at

laboratory for general evaluation of infection severity

at each site:

DIi ¼
SHBDIi � SHBDHi

THi
; (1)

where DIi is field disease index for site i. The first

sampling date (7/13/99) was �10 days past 1/2 in.

(�1.3 cm) internode elongation. The second sampling

date (7/31/99) was at 100% heading. And the final

rating date (8/26/99) was about a week prior to field

drain for harvest.

3.2. Remote sensing image acquisition

Four airborne remote sensing images were

acquired over the field on July 12, July 24, August

4, and August 17, 1999 separately during the

sampling period by Positive System Inc., using

ADAR (Airborne Data Acquisition and Registration)

System 5500. The images had four bands respec-

tively in blue: band 1 (450–540 nm), green: band 2

(530–600 nm), red: band 3 (610–680 nm) and near

infrared: band 4 (780–1000 nm) regions. The images

were stored as 8-bit digital number (DN) values

ranging from 0 to 255. Ground resolution of the

images was �1 m which included approximately 150

plants. Fig. 1b shows one image of the field, with

bands 3, 2 and 1 as RGB, from which one can clearly

see levees of the rice field. The irregular levees were
mainly for farming irrigation management according

to slope and soil variation.

3.3. Image processing to extract data

Image data were extracted to relate to the field

sampling data. Using software ENVI 3.4, we

generated subset images of the field from the ADAR

images. Eleven strips were divided in each subset

image to match strip number for field sampling. Then

we calculated the row and column pixel numbers of

each strip to decide the image sampling locations of

the strip and computed approximate coordinate for

each image sampling location. To match field

sampling, we divided evenly each strip of the subset

images into 50 spots for data extraction. ENVI spectral

function was used for data extraction from the subset

images. To minimize possible bias, we tested 4-pixel

and 8-pixel schemes of data extraction for compar-

ison. Fig. 2 shows the comparison results. Little

variation was observed for the two schemes. T-test

values for the four bands were 0.555, 0.233, 0.406 and

0.287 respectively with d.f. = 32. None of them were

statistically significant at confidence level of 95%.

Therefore, we concluded that there was no significant

difference for these two sampling schemes. For the

further analysis, 8-pixel scheme was used in the study

for data extraction.

3.4. Image index computation

Three simple methods were used to capture the

extracted image data for the comparison with the field
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Table 1

Correlation analysis of the ratio indices for sampling points with

DI > 10% on image 8/4

Ratio indices Correlation R T testa

RI24 0.67621 14.998

RI23 0.66682 14.621

RI21 0.26208 4.437

RI14 0.71727 16.820

RI13 0.60183 12.314

RI43 0.58183 11.689
a All have d.f. = 267 and are statistically significant at a = 0.05.

Table 2

Correlation analysis of standard difference indices for sampling

points with DI > 10% on image 8/4

Image indices Correlation R T testa

SDI24 0.60516 12.42083

SDI23 0.58247 11.70887

SDI21 0.26336 �4.46082

SDI14 0.66586 14.58310

SDI13 0.57644 11.52696

SDI43 0.50532 �9.58636
a All have d.f. = 267 and are statistically significant at a = 0.05.
disease index: (1) direct band DN value, (2) ratio

indices and (3) standard difference indices. The ratio

indices were calculated as follows:

RI2 p ¼ B2

B p
; for p ¼ 1; 3; 4 (2a)

RI1q ¼ B2

Bq
; for q ¼ 3; 4 (2b)

RI43 ¼ B4

B3

; (2c)

where RI refers to the ratio index, B1, B2, B3 and B4 are

the DN values of bands 1, 2, 3 and 4. For standard

difference indices, we had:

SDI2 p ¼ B2 � B p

B2 þ B p
; for p ¼ 1; 3; 4 (3a)

SDI1q ¼ B1 � Bq

B1 þ Bq
; for q ¼ 3; 4 (3b)

SDI43 ¼ B4 � B3

B4 þ B3

; (3c)

where SDI refers to the standard difference index.

Using these indices, we expected to develop useful

applicable indicators for detecting rice sheath blight in

remote sensing.

3.5. Linear interpolation to match data

Since the ADAR imaging dates did not match the

field sampling dates, interpolation was utilized to

generate the intermediate data. Among the three field

samplings and four images, only the first sampling

(July 13, 1999) could be directly used to compare with

the first image (July 12, 1999). Others require

interpolation to match data. Linear interpolation

was used in this study. Therefore for a sampling date

c between two imaging dates a and b (b > c > a), the

following formula was used:

DIc ¼
ðb � cÞDIa þ ðc � aÞDIb

b � a
; (4)

where DIc is field disease index on imaging date c, DIa

and DIb are field disease indices on field sampling

dates a and b.
3.6. Method development to detect disease

Two steps were developed to process the image for

disease detection. First we examined the relationships

between the field disease index and the extracted

image values through direct band DN values, ratio

indices and standard difference indices. Then we

selected useful applicable indicators to develop a

method for image processing. Several indices such as

RI14, SDI14 and SDI24 show better correlations

(Tables 1 and 2) with the field disease index. To

identify infected plants from healthy ones in the field,

the following procedures have been conducted for

method development:
(1) P
rocessing the images to retrieve indices RI14,

SDI14 and SDI24.
(2) S
ince the three indices have different measure-

ment units, it is necessary to transform their values

into the same magnitude system for statistical

analysis. Generally two procedures are available

for such transformation: ‘‘mean standard devia-

tion’’ standardization method to make the values

having a mean of 0 and standard deviation of 1

after transformation, and ‘‘min–max’’ standardi-

zation method to make the values ranging from 0
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to 1. In the study we select the first method for the

transformation with the following formula.

DRI14 ¼ RI14 � MRI14

SRI14

(5a)

DSDI14 ¼ SDI14 � MSDI14
(5b)
SSDI14

DSDI24 ¼ SDI24 � MSDI24
(5c)
SSDI24

where DRI14, DSDI14 and DSDI24 are standardiza-

tions of RI14, SDI14 and SDI24; MRI14, MSDI14 and

MSDI24 are means of the indices; and SRI14, SSDI14

and SSDI24 are the standard deviations.
(3) C
omputing a new index as an average of the three

selected indices according to the following

formula:

RSI ¼ DRI14 þ DSDI14 þ DSDI24

3
(6)

Since the three indices have a positive correlation

with ground disease index, the higher value of

RSI, the higher disease infection level of the pixel.
(4) D
eveloping equation to estimate disease severity

from index RSI. We divided the field sampling

data into two datasets: for equation development

and for validation. Data for images from July 24

and August 17 were used for equation develop-

ment and image from August 4 was for validation.
(5) V
alidating the method. We used the RSI of image

from August 4 to estimate infection severity of the

sampling spots and then compared with the

observed field disease index to validate the

applicability of the equation. Estimated accuracy

was calculated as root mean square (RMS) error in

the following formula:

RMS ¼ SðDI0 � DIÞ2

N

" #1=2

(7)

where DI0 is the estimated disease index, and N

number of samples for the computation. Low

RMS implies high accuracy of the equation.
(6) A
pplying the equation to image processing. We

used the equation to estimate the pixels’ infection

level of the image from August 4 and an estimated

infection image was generated. A contour map

was created using ArcView GIS from field

sampling data on the imaging date to indicate
infection severity of the disease. Comparisons of

the estimated infection image with the contour

map can demonstrate the ability of the proposed

method in discriminating infected plants from

healthy ones.
4. Results and discussion

4.1. Direct band DN value analysis

Fig. 3 shows direct band DN values of image

August 4 of 1999 and field disease index sampled

August 4 of 1999. Correlation between field disease

index and direct band DN value was not apparent. The

change of field disease index might be proportional to

the image pixel DN values but the trend was rather

weak in all bands (Fig. 3). For most pixels, the field

disease index ranged from low to high and the band

DN values also ranged from low to high. This widely

scattering variation suggested a weak correlation

between the two correspondent variables in Fig. 3,

implying that the disease was difficult to be directly

identified in the original wide-band images.

Correlation analysis between the field disease

index and the direct band DN values indicated that

only band 4 (near infrared) has relatively higher

correlation (R = 0.5928). Using R2, the DN values of

band 4 can only explain over one third of the field

disease variations. Fig. 3 also revealed that points with

lower infection severity (DI < 10) did not show a clear

change with the field disease index. However, the

points with higher infection severity (DI 	 10) did

show some correlated changes with the field disease

index. By only using the points with DI 	 10, the

correlation coefficients for bands 1 through 3 were

much improved. When similar analysis was applied to

other three images, we obtained similar results as for

the image of August 4 of 1999. Thus, it was necessary

to examine the applicability of image indices for the

identification. Two types of image indices were

examined here in the paper: band ratio indices and

band difference indices.

4.2. Correlation analysis for ratio indices

Fig. 4 shows better correlations between the ratio

indices and field disease index for the image of August
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Fig. 3. Correlation between field disease index and direct band DN values for image 8/4.
4, 1999 when compared to Fig. 3. This was especially

true for RI24, RI23, RI14, and RI43 (Fig. 4). Fig. 4

indicates that the field disease index tends to increase

with indices RI24, RI23, RI14, and RI13 with statistical

significance at a = 0.01. However, for indices RI43 and

RI21 the relationship was in reverse, which indicated

that DI decreased with these two indices. T-test

indicated that the correlation for RI21 was not

statistically significant at a = 0.05, which may mean

that the index could not be effectively used for remote

sensing of the disease. Except RI24, other ratio indices

had slightly better correlations, but not high enough

(R < 0.6) to be useful either (Fig. 4). When rice plants

had low infection severity (DI < 10), its spectral

signature would be closer to the spectra of healthy

plants. When infection severity reaches a certain level

and larger spectral differences between healthy and

diseased plants could be observed, discrimination of

infected plants from healthy ones is possible (Zhang

et al., 2002).
Figs. 3 and 4 showed that about half of the sampling

points had low infection severity (DI < 10). Con-

sidering the case, we might want to see how the

correlation was for only those sampling points with

moderate and above infection levels. Table 1 shows

the results of statistical analysis of the sampling points

with DI > 10. Much better correlations were obtained

in this analysis when compared to that for all sampling

points. This analysis also indicated that the ratio

indices RI24, RI14, and RI23 were the best three

indicators (Table 1) for this disease using the remote

sensing imagery.

4.3. Analysis for standard difference indices

Fig. 5 showed the correlation between field disease

index and standard difference indices for image from

August 4. This indicated that standard difference

indices were more valuable to identify the disease than

ratio indices or direct band DN values. Indices SDI24,
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Fig. 4. Correlation between field disease index and ratio indices for image 8/4.
and SDI14 were better than indices SDI23, SDI23 and

SDI43 (Fig. 5). The first two indices explained 40% of

the variation of field disease index, while the latter

three only explained 17–23%. The index SDI21, most

scattering, had almost no correlation with the field

disease index.

Using only the points with DI 	 10, the correlation

coefficients were higher than those for all sampling

points (Table 2). This confirmed the previous
conclusion that detection of the rice disease was

possible only when infection severity reaches a certain

level. Even though there were differences among the

images of early and late growing seasons, some image

indices especially SDI24, SDI14, SDI23, SDI43 and

SDI13 were better correlated (Table 2) with the field

disease index in all cases. These indices could be

valuable indicators for developing method to detect

the rice disease in remote sensing.
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Fig. 5. Correlation between field disease index and standard difference index for image 8/4.
4.4. Statistical analysis for indicator selection

The above analysis revealed that standard differ-

ence indices were better correlated with the field

disease index than any of the single band and ratio

indices. Furthermore, Tables 1 and 2 indicated that

indices RI24, RI14, RI23, SDI24, SDI14, and SDI43 had

relatively higher correlation with the field disease

index for image from August 4. Table 3 showed that
indices RI14, SDI24 and SDI14 were generally better

than other indices. Their correlations coefficients were

0.675, 0.638 and 0.627 respectively for image 8/4, and

0.622, 0.708 and 0.564 for image 8/17. These values

were statistically significant at confidential level

above 99%. The higher correlations of these three

indices were observed in later images (8/4 and 8/17)

than in early image (7/24). This might attribute to the

different development stages of the rice disease in the
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Table 3

Correlation analysis of the highlighted indices for all images

Image indices Correlation R T testa

Image 7/24

RI24 0.41570 10.69950

RI14 0.30810 7.58123

RI43 0.31786 10.7465

SDI24 0.41642 10.72188

SDI14 0.45025 11.80429

SDI43 0.30757 7.56695

Image 8/4

RI24 0.66704 20.95891

RI14 0.67458 21.39170

RI43 0.57993 16.66408

SDI24 0.63819 19.40523

SDI14 0.62664 18.82342

SDI43 0.48223 12.89783

Image 8/17

RI24 0.45891 12.09119

RI14 0.62170 18.58107

RI43 0.47662 12.69154

SDI24 0.70784 23.45816

SDI14 0.56438 16.00450

SDI43 0.42694 11.05220
a All have d.f. = 548 and are statistically significant at a = 0.05.

Fig. 6. Correlations between RSI and DI for remote sensing of the

rice disease. The lines inside is the fitted regression equation.
field, in spite of the fact that different treatments of

pesticides have been applied for other projects. In later

images, the disease may have progressed in severity

than in early days. This in turn affects the spectral

signature of the plants for remote sensing. Since these

indices have generally higher correlation with the field

disease index, we may conclude that they are better

candidate indicators for remote sensing identification

of the rice disease.

4.5. Classification analysis of rice disease

severity

Using Eq. (6), we developed a comprehensive

image index on the basis of the selected indices RI14,

SDI24 and SDI14 to classify the images. We classified

the images into four classes, with class 1 referring to

healthy to light infection (DI < 20), class 2 referring

to light to moderate infection (DI = 20–35), class 3

referring to moderate to severe infection (DI = 35–50),

and class 4 referring to severe infection (DI > 50).

Fig. 6 indicated that the points with RSI < 2 mainly

corresponded to the samples of DI < 20, RSI ranging

from 0 to 1.5 mainly to the samples of DI between 20
and 25, RSI ranging from 1.5 to mainly to the samples

of DI between 35 and 50, and RSI > 2.5 mainly to

those samples with DI > 50. Therefore, we used the

following criteria: RSI < 0.5 for class 1, RSI = 0.5–

1.5 for class 2, RSI = 1.5–2.5 for class 3 and RSI > 2.5

for class 4 for the classification of the images. The

accuracy of the classification was �76% (Table 4).

The misclassification was mainly from in class 2 of

some light infection samples, which in practice might

benefit pest management in fields to control the

disease at early stage.

4.6. Equation for estimation of infection severity

Using the comprehensive image indices for the

dataset of images 7/24 and 8/17, we were able to

develop an equation for quantitative estimation of the

infection level of rice plants in the remote sensing

imagery:

DI ¼ 12:74001 þ 10:42501 RSI

R ¼ 0:606 SEE ¼ 10:848 F ¼ 637:2 (8)

The relationship between the field disease index and

the RSI was statistically significant. The standard

estimation error (SEE) implied that the disease index

estimate was probably with an average error of 10.8

using the equation. Considered moderate infection

when DI was over 35, this estimation error might still

be acceptable to take management actions in the field.

The correlation of the equation was only 0.606, which

was somewhat low. This relatively low correlation
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Table 4

Accuracy of classification with the image index

Image Class Correct Mis-class Accuracy (%)

7/24 1 396 18 83.54

2 22 35 38.60

3 12 6 66.67

4 1 0 100.00

Sum 431 119 78.36

8/4 1 361 39 90.25

2 60 64 48.39

3 12 9 57.14

4 4 1 80.00

Sum 437 113 79.45

8/17 1 335 61 84.60

2 48 81 37.21

3 10 6 62.50

4 9 0 100.00

Sum 402 148 73.09

Total 1 1092 178 85.98

2 130 180 41.94

3 34 21 61.82

4 14 1 93.33

Sum 1270 380 76.97

Fig. 7. Comparison of the estimated DI with the observed DI on

image 8/4 for validation. The diagonal represents no error.
may imply the limitation of the wide-band imaging

data in disease detection. It is applicable for disease

detection but not as good as we expect!

We validated the equation to another ground

sampling dataset (image 8/4), which resulted in a

root mean square (RMS) error of 9.555. The smaller of

RMS than SEE confirmed the higher accuracy of the

equation for estimation. However, Eq. (8) may result

in DI < 0, which contradicted our assumption of

healthy plants having DI = 0. Moreover, we found that

the estimation could be improved for the points with

DI > 10:

DI ¼ 13:61421 þ 15:195263 RSI

R ¼ 0:683 SEE ¼ 9:322 F ¼ 682:6 (9)

Actually RSI = �1.115 and �0.240, respectively cor-

responded to DI = 0 and 10 when Eq. (8) was used.

Therefore, the following strategy was proposed for

estimation of infection severity in practical applica-

tion: (a) let DI = 0 when RSI < �1.115, (b) use Eq. (8)

when �1.115 < RSI < �0.240, and (c) use Eq. (9)

when RSI > �0.240. Applying this strategy to image

8/4 resulted in Fig. 7, which showed the estimated DI

against the observed DI. This strategy produced a
smaller estimation of RMS = 9.104 to image 8/4 than

Eq. (8). Fig. 7 showed overestimates for DI values

between 15 and 35, which corresponded to light-to-

moderate infection level. Such an overestimate might

be favorable for pest management because it provided

higher alert to disease controls before severe devel-

opment of the disease.

4.7. Distribution of the rice disease on images

Fig. 8a displays the disease severity in the field

after image classifications and Fig. 8b presents the

disease severity from field samplings. Both field maps

had similar patterns of disease severity. Comparisons

of the GIS contour mapping of field scouting points for

the disease infection levels (Fig. 8b) with the image

disease classifications (Fig. 8a) indicate that the

method of predicting the disease severity from

imagery was applicable for the disease identification.

The estimated infected areas in the image overlapped

the spatial patterns of the observed disease identified

in the GIS contour map. Geostatistical analysis of the

image and the counter map results in a spatial

correlation of 0.668 between the image and the map

for the sampling locations identified partly on the map

(Fig. 8b). This correlation is slightly lower than the

correlation of Eq. (9) used to generate the image. This

may be attributed to the date difference of the image

(8/4) and the map (7/31). The analysis also indicates

that the RMS error of the image to the map is 11.56,

also higher than the SEE error of Eq. (9), probably as a

result of its lower correlation than the equation’s

correlation. By scaling into the classes, we find that the
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Fig. 8. Spatial patterns of sheath blight infection in the rice field. (a) Retrieved infection from image 8/4 using our method and (b) contour of the

disease severity based on field sampling data obtained on July 31, 1999.
image has 68.63% of the sampling locations sharing

the same infection severity as the map, indicating that

accuracy of the estimation by the approach is slightly

higher than 2/3.

In spite of this, the image illustrated the detailed

spatial distribution of the disease and showed the

possible disease development in the field. Two main

infected areas were clearly identified in the image. The

upper left part and the middle-to-lower part in the image

corresponded to the two main infected areas. In general,

the western half of the rice field was much more

severely infected with sheath blight than its eastern half.

On the other hand, we also noticed that the plants along

the levees had higher level of infection. This might

imply an infection pattern of the disease development

along levees. Levees served as irrigation and venture

channel for the field. These might provide better
conditions for the disease (fungus spores) to propagate

spatially in the field because water was a favorable

factor for the development of pathogen Rhizoctonia

solani Kühn leading to sheath blight (Nandakumar

et al., 2001; Vidhyasekaran et al., 1997).

Although the distribution of the image extracted

infection generally matched with the GIS contour

mapping of the infection, there were differences of

infections severity between Fig. 8a and b. The GIS

contour map showed more extensively the moderate

infection than that on the ADAR image. This was likely

attributed to the accuracy of the method, which was

�70% as mentioned above. On the other hand, ADAR

was a broadband imagery system. In spite of high

spatial resolution (1 m), its spectral resolution was quite

low. The four bands cover broader range of blue, green,

red and infrared wavelengths. Since infected plants do
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not show an obvious spectral difference from healthy

ones in broad range of visible wavelength (Zhang

et al., 2002), the broadband ADAR images might not

be able to accurately separate infection severity in

these wavelengths. This implied that the ADAR

system was highly valuable in remote sensing of

crop disease detection but its spectral resolution

might not be high enough to accurately discriminate

plants with light infections. In Japan, Yamamoto

et al. (1995) examined the applicability of infrared

thermal images in identification of rice blast disease

through visual interpretation. Though the occurrence

of rice blast disease was visible in thermal images,

quantitative analysis using various indices for

accurate identification had not been done in their

study. Our study showed that ADAR images could be

used to show the coarse distribution patterns of

infected plants in the field. To accurately map the

severity of infected plants, a better spectral resolu-

tion imagery system is required (narrower bandwidth

and more bands especially in infrared range), in

addition to high spatial resolution. Hyperspectral

remote sensing and thermal remote sensing may be

such alternatives (Zhang et al., 2003).
5. Conclusion

This research using the broadband visible and

infrared data in the study indicates that remote sensing

technology could offer great potential in application to

detect crop disease. Actual application of the

technology in field pest management would come

later. Direct band DN values did not show an

encouraging correlation with field-sampled disease

severity. Band ratio indices and standard difference

indices had the potential to serve as indicators for

remote identification of rice sheath blight. Among the

six band ratio indices and six standard difference

indices, we found that RI14, SDI14 and SDI24 were

generally better in correlating with field disease index

to indicate the infection levels of the rice disease. The

significant correlations between these three indices

and the field disease index confirmed the capability of

broadband airborne multispectral remote sensing

imagery in identifying the rice disease.

On the basis of these three indices, a method had

been developed in the study, including to retrieve the
three indices from original image data and to convert

them into the same scaling through standardization.

For practical use, a method had been developed to

combine these three indices into a comprehensive

image index (RSI) for classifying the rice disease.

Finally, we applied the comprehensive index to

classify four classes. Validation with the ground data

indicated that this scheme had an accuracy of up to

70%.

A strategy with two corresponding equations had

been developed for quantitative estimation of the

disease severity using the comprehensive image index.

As indicated by F test value, the equations were

statistically significant, indicating that they were

applicable. Similar spatial distribution of image

detected disease patterns and the ground scouting

patterns in the field confirmed the applicability of the

proposed method. Spatial accuracy of the method was

68.63% for the sampling locations when the estima-

tion from 8/4 image was compared with the 7/31

counter map (Fig. 8). We also realized from our

analysis that discrimination of healthy plants from

light infection ones (DI < 20) was difficult because of

their heavy overlap in the estimated image indices.

Identification was more accurate when infection

reached to moderate to severe level (DI > 35). This

might suggest that, in addition to high spatial

resolution, a better spectral resolution remote sensing

imagery with more bands and narrower bandwidth

would be highly required for remote sensing diagnosis

of crop disease stress.
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